DIFFERENTIAL GEOMETRY MID-TERM EXAM

RAMESH SREEKANTAN

The marks for each question is given in brackets after the question. The total is 40.

1.(a) Show that the arc length of the catenary

$$\boldsymbol{\alpha}(t) = (t, \cosh(t))$$
 $0 \le t \le b$

is $\sinh(b)$.

- (b) Reparametrize the catenary by arc-length.
- 2. Calculate $\mathbf{T}, \mathbf{N}, \mathbf{B}$ and κ, τ for the following curve.

$$\boldsymbol{\alpha}(t) = (\cosh(t), \sinh(t), t)$$

3. Prove that the curvature of a plane curve y = f(x) is given by

$$\kappa(x) = \frac{|f''|}{(1+f'^2)^{3/2}}$$

4. Let $\boldsymbol{\alpha}$ be a regular curve with $\kappa \neq 0$ at P. Prove that the planar curve obtained by projecting $\boldsymbol{\alpha}$ on to its osculating plane at P has the same curvature as $\boldsymbol{\alpha}$. (4)

5. Let $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ be two regular curves on [a, b]. We say $\boldsymbol{\beta}$ is an *involute* of $\boldsymbol{\alpha}$ if, for each $t \in [a, b]$,

- $\boldsymbol{\beta}(t)$ lies on the tangent line to $\boldsymbol{\alpha}$ at $\boldsymbol{\alpha}(t)$
- $\alpha'(t)$ and $\beta'(t)$ are perpendicular for all t.

 α is called the *evolute* of β . Show

(a) If α is arc-length parametrized, show that

$$\boldsymbol{\beta}$$
 is the involute of $\boldsymbol{\alpha} \iff \boldsymbol{\beta}(s) = \boldsymbol{\alpha}(s) + (c-s)\mathbf{T}(s)$

for some constant c.

- (b) Show that the involute of a helix $(a\cos(t), a\sin(t), bt)$ is a plane curve. (6)
- 6. Suppose C is a simple closed plane curve with $0 < \kappa \le c$. Prove that $length(C) \ge \frac{2\pi}{c}$. (4)

(8)

(4)

(4)

(4)

(6)